cutset basis matrix - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

cutset basis matrix - перевод на русский

MATRIX REPRESENTATION OF A CLIFFORD ALGEBRA
Dirac matrices; Dirac Matrices; Gamma matrix; Weyl basis; Dirac matrix; Dirac basis

cutset basis matrix      
[т. граф.] матрица фундаментальных разрезов
cutset basis matrix      

теория графов

матрица фундаментальных разрезов

vector basis         
  • The same vector can be represented in two different bases (purple and red arrows).
  • This picture illustrates the [[standard basis]] in '''R'''<sup>2</sup>. The blue and orange vectors are the elements of the basis; the green vector can be given in terms of the basis vectors, and so is [[linearly dependent]] upon them.
  • [−1, 1]<sup>''n''</sup>}} as a function of dimension, ''n''. Boxplots show the second and third quartiles of this data for each ''n'', red bars correspond to the medians, and blue stars indicate means. Red curve shows theoretical bound given by Eq. (1) and green curve shows a refined estimate.<ref name = "GorbanTyukin2016"/>
SUBSET OF A VECTOR SPACE THAT ALLOWS DEFINING COORDINATES
Linear Algebra/Basis for a Vector Space; Linear algebra/Basis for a vector space; Basis of a vector space; Basis vector; Hamel basis; Hamel bases; Linear basis; Vector space basis; Basis vectors; Ordered basis; Vector decomposition; Basis (vector space); Vector basis; Basis (mathematics); Basis element; Algebraic basis; Basis (algebra); Component of a vector; Cone basis; Convex basis; Coordinate (vector space)

математика

векторный базис

Определение

MATRIX MATH
<language> An early system on the UNIVAC I or II. [Listed in CACM 2(5):1959-05-16]. (1997-02-27)

Википедия

Gamma matrices

In mathematical physics, the gamma matrices, { γ 0 , γ 1 , γ 2 , γ 3 } {\displaystyle \left\{\gamma ^{0},\gamma ^{1},\gamma ^{2},\gamma ^{3}\right\}} , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3( R {\displaystyle \mathbb {R} } ). It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin-1/2 particles.

In Dirac representation, the four contravariant gamma matrices are

γ 0 = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) , γ 1 = ( 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 ) , γ 2 = ( 0 0 0 i 0 0 i 0 0 i 0 0 i 0 0 0 ) , γ 3 = ( 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 )   . {\displaystyle {\begin{aligned}\gamma ^{0}&={\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}},&\gamma ^{1}&={\begin{pmatrix}0&0&0&1\\0&0&1&0\\0&-1&0&0\\-1&0&0&0\end{pmatrix}},\\\\\gamma ^{2}&={\begin{pmatrix}0&0&0&-i\\0&0&i&0\\0&i&0&0\\-i&0&0&0\end{pmatrix}},&\gamma ^{3}&={\begin{pmatrix}0&0&1&0\\0&0&0&-1\\-1&0&0&0\\0&1&0&0\end{pmatrix}}~.\end{aligned}}}

γ 0 {\displaystyle \gamma ^{0}} is the time-like, Hermitian matrix. The other three are space-like, anti-Hermitian matrices. More compactly, γ 0 = σ 3 I {\displaystyle \gamma ^{0}=\sigma ^{3}\otimes I} , and   γ j = i σ 2 σ j   , {\displaystyle \ \gamma ^{j}=i\sigma ^{2}\otimes \sigma ^{j}\ ,} where {\displaystyle \otimes } denotes the Kronecker product and the σ j {\displaystyle \sigma ^{j}} (for j = 1, 2, 3) denote the Pauli matrices.

The gamma matrices have a group structure, the gamma group, that is shared by all matrix representations of the group, in any dimension, for any signature of the metric. For example, the Pauli matrices are a set of "gamma" matrices in dimension 3 with metric of Euclidean signature (3, 0). In 5 spacetime dimensions, the 4 gammas above together with the fifth gamma-matrix to be presented below generate the Clifford algebra.

Как переводится cutset basis matrix на Русский язык